Minimally Supervised Acquisition of 3D Recognition Models from Cluttered Images
نویسندگان
چکیده
Appearance-based object recognition systems rely on training from imagery, which allows the recognition of objects without requiring a 3D geometric model. It has been little explored whether such systems can be trained from imagery that is unlabeled, and whether they can be trained from imagery that is not trivially segmentable. In this paper we present a method for minimally supervised training of a previously developed recognition system from unlabeled and unsegmented imagery. We show that the system can successfully extend an object representation extracted from one black background image to contain object features extracted from unlabeled cluttered images and can use the extended representation to improve recognition performance on a test set.
منابع مشابه
A Systematic Approach on 3D Object Modeling and Recognition
This article introduces a novel representation for three-dimensional (3D) objects in terms of local affine-invariant descriptors of their images and the spatial relationships between the corresponding surface patches. Geometric constraints associated with different views of the same patches under affine projection are combined with a normalized representation of their appearance to guide matchi...
متن کامل3D Object Modeling and Recognition Using Affine-Invariant Patches and Multi-View Spatial Constraints
This paper presents a novel representation for three-dimensional objects in terms of affine-invariant image patches and their spatial relationships. Multi-view constraints associated with groups of patches are combined with a normalized representation of their appearance to guide matching and reconstruction, allowing the acquisition of true three-dimensional affine and Euclidean models from mul...
متن کامل3D Object Modeling and Recognition Using Affine-Invariant Patches and Multi-View Spatial Constraints
This paper presents a novel representation for three-dimensional objects in terms of affine-invariant image patches and their spatial relationships. Multi-view constraints associated with groups of patches are combined with a normalized representation of their appearance to guide matching and reconstruction, allowing the acquisition of true three-dimensional affine and Euclidean models from mul...
متن کاملObject Recognition and Full Pose Registration in Cluttered Environments
Robust perception is a vital capability for robotic manipulation in unstructured scenes. In this context, full pose estimation of relevant objects in a scene is a critical step towards the introduction of robots into household environments. In this paper, we present an approach for building metric 3D models of objects using local descriptors from several images. Each model is optimized to fit a...
متن کامل